Low-complexity Matrix Embedding Using an Efficient Iterative Search Strategy
نویسندگان
چکیده
This study proposes a novel suboptimal embedding algorithm for binary messages based on a lowweight search embedding (LWSE) strategy. The suboptimal LWSE strategy involves using algorithm to perform an embedding procedure by using a parity check matrix. The optimal embedding algorithm, which is based on the maximun likelihood (ML) algorithm, aims to locate the coset leader and minimize embedding distortion. The optimal embedding based on linear codes can achieve high embedding efficiency but incurs high computation. Conversely, the LWSE does not need to locate the coset leader, but instead requires suboptimal object. Because its corresponding weight remains close to that of the coset leader, the algorithm proceeds in an efficiently iterative manner. When using the optimal ML algorithm for a situation involving the highest operation complexity, the operation complexity of the suboptimal LWSE is linearly proportional to the number of code dimension. Key-Words: suboptimal embedding algorithm, data hiding, digital watermarking, informed coding, informed embedding, maximun likelihood algorithm.
منابع مشابه
An improved and efficient stenographic scheme based on matrix embedding using BCH syndrome coding.
This paper presents a new stenographic scheme based on matrix embedding using BCH syndrome coding. The proposed method embeds massage into cover by changing some coefficients of cover. In this paper defining a number :::as char:::acteristic of the syndrome, which is invariant with respect to the cyclic shift, we propose a new embedding algorithm base on BCH syndrome coding, without finding ro...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملFinding the polar decomposition of a matrix by an efficient iterative method
Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کامل